

### Whole Slide Image (WSI) Analysis with QuPath

Tutorial



EMPAIA Academy Hands-On Workshop – ECDP2022

100



## Whole Slide Image (WSI) Analysis with QuPath



Objectives:

- 1. learn how to get started with the open-source software QuPath
- 2. train QuPath to distinguish tumor / non-tumor
- 3. use QuPath for Ki67 Analysis
- 4. apply the trained algorithm to other regions of interest



EMPAIA Academy Hands-On Workshop – ECDP2022



# (A) Set-Up Project in QuPath

(1) Download & Install QuPath
(2) Create Project & Add Whole Slide Images
(3) View & Explore WSI

### (1) Download, Install and Open QuPath

- Download & install the QuPath Software suitable for your operating system from <u>https://qupath.github.io/</u>
- 2. After successful installation, you can find the QuPath Icon on the desktop:



### (2) Create Project in QuPath and Add Images

1. Create Project:

"File" > "Project" > "Create project"



- 2. Add WSI to Project:
  - a. "File" > "Project" > "Add images"
  - b. drag&drop Ki67 image to pop-up window, and set image type "Brightfield (other)"

### 🍭 QuPath



| Set image type | •                   |
|----------------|---------------------|
| Rotate image   | Brightfield (H-DAB) |
| Optional args  | Brightfield (H&E)   |
| Auto-genera    | Brightfield (othry) |
| Import object  | Fluorescence        |
| Choose files   | Other               |
| Choose line.   | Not set             |
|                | Import Abbrechen    |

### (3) View & Explore WSI in QuPath

1. Open WSI

(double-click on image name in the image list)

| 🍳 QuPath                                                |                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| File Edit Tools View Objects TMA Measure Automate       | Analy                                                                                                                                                                                                                                                                                                       |
| S + C / C V 2 * & S                                     |                                                                                                                                                                                                                                                                                                             |
| Project Image Annotations Hierarchy Workflow            |                                                                                                                                                                                                                                                                                                             |
| Create project Open project Add images                  |                                                                                                                                                                                                                                                                                                             |
| Image list                                              |                                                                                                                                                                                                                                                                                                             |
| <ul> <li>myQuPath-ECDP-WS/project.qpproj (2)</li> </ul> |                                                                                                                                                                                                                                                                                                             |
| DigitalSlide_1.svs                                      |                                                                                                                                                                                                                                                                                                             |
| DigitalSlide_2.svs                                      |                                                                                                                                                                                                                                                                                                             |
|                                                         | QuPath<br>File Edit Tools View Objects TMA Measure Automate<br>File Edit Tools View Objects TMA Measure Automate<br>Froject Image Annotations Hierarchy Workflow<br>Create project Open project Add images<br>Image list<br>myQuPath-ECDP-WS/project.qpproj (2)<br>DigitalSlide_1.svs<br>DigitalSlide_2.svs |

 Explore the image: scroll to zoom in and out... press left mouse key to drag the image...

# (B) Train Classifier for Tumor/Non-Tumor

- (1) Make ROI with Region\*
- (2) Annotate Tumor Areas within that region
- (3) Annotate Non-Tumor Areas within that region
- (4) SELECT that annotation
- (5) Train Classifier

### (1) Annotate Region of Interest

- 1. Step 1: Select Annotation-Class "Region\*":
  - > 1. click on "Annotations"
  - > 2. click on "Region\*"
  - > 3. click on "Auto set"
- 2. Step 2: Select Annotation Tool: (e.g. Rectangle)



#### QuPath - 3.svs File Edit Tools View Objects TMA Measure Automate Analyze Classify Project Image Annotations Hierarchy Workflow Annotation (Rectangle) (Region Tumor Stroma Immune cel Necrosis Othe Region\* I lanore Positive Negative Non-Tumor

3. Step 3: Draw Annotation to mark Region of Interest

## (2) Annotate Tumor Areas

 Step 1: Select Annotation-Class "Tumor": > 1. click on "Annotations"

- > 2. click on "Tumor"
- > 3. click on "Auto set"
- 2. Step 2: Select Annotation Tool: (e.g. Polygon or Bru



3. Step 3: Draw Annotations to Mark Tumor Areas



### 🍭 QuPath - DigitalSlide\_1.svs



### (3a) Create Annotation Class "Non-Tumor"



### (3b) Annotate Non-Tumor Areas

- 1. Step 1: Select Annotation-Class "Non-Tumor"
  - > 1. click on "Annotations"> 2. click on "Non-Tumor"> 3. click on "Auto set"
- 2. Step 2: Select Annotation Tool: (e.g. Polygon or Brush)

3. Step 3: Draw Annotations to Mark non-tumor Areas







### (3d) Train Classifier

- 1. Select the Region of Interest
- 2. Step 2: Select "Train Pixel Classifier"

| alyze | Classify    | Extension    | IS | Help            |                       |
|-------|-------------|--------------|----|-----------------|-----------------------|
| 1     | Object cla  | assification | Þ  | 8 2             | с —                   |
| _     | Pixel class | ification    | ٠  | Load pixel cla  | assifier              |
|       | Training i  | mages        | ۲  | Train pixel cla | assifier Ctrl+Shift+P |
|       |             |              |    | 1               | S                     |

- 1. Step 3: Configure Pixel Classifier
  - a. set Resolution to "Moderate"
  - b. set Region to "Everywhere"
  - C. click on "Live prediction" (and wait for result)
  - d. use the slider to adjust the transparency of the result visualisation so that you can check the plausibility of the result

 $\rightarrow$  if the result is not good yet, try another resolution (e.g. "Extremely low" ...)

2. Step 4: Name and Save your Classifier

#### Pixel classifier

| Classifier    | Artif | ficial neu | ral network (  | ANN_MLF   | ?)     | _     | -     | Edit   |          |         |        |           |
|---------------|-------|------------|----------------|-----------|--------|-------|-------|--------|----------|---------|--------|-----------|
| Resolution    | Mod   | derate (4. | 00 µm/px)      |           | а      |       | -     | Add    |          |         | · ···· |           |
| Features      | Defa  | ault multi | scale feature  | 25        | -      | E     | Edit  | Show   |          | ×.,     | 10     | 5         |
| Output        | Clas  | sification | l              |           |        |       | -     | Show   | 1        | e f     | 100 m  | 12        |
| Region        | Ever  | ywhere     |                | b         |        |       |       | *      | 1 Par    | ST.     | AL.    |           |
|               | Load  | training   |                |           | Advand | ed op | tions |        | 15.1     |         | 50     |           |
|               |       |            | Live pre       | diction   | с      |       |       |        | - And    | All a   |        | 2         |
|               |       |            |                |           | 5      |       |       |        | 2.2      | 14      | 2      | ~         |
|               |       |            |                |           | 5      |       |       | Stroma | P. S. M. | 2       | na -   | 10<br>- 1 |
|               |       |            |                |           |        |       | •     | Tumor  | 2 m      | 3.      |        |           |
|               |       |            |                |           |        |       |       |        |          |         | Sea 2  |           |
|               |       |            | Classification | n: Stroma |        |       |       |        | 19. 1607 | 134     |        | ÷.,       |
| Classifier na | ame   | Enter na   | me             |           |        |       |       | Save   | Show c   | assific | ation  |           |
| Me            | asure |            | Create ob      | jects     |        | Class | ify   | :      | _        | )—      | d      | -         |

#### Objects Edit Tools View TMA Mea 0 S V D (4) Automatic Tumor Annotations Project Image Annotations Hierarchy Workflow Annotation (Polygon) (Stroma) None Tumor (6) Annotation (Polygon) (Stroma) Stroma (4) 🕅 Annotation (Geometry) (Stroma) Step 1: Select Region of Interest from Annotations' list Immune cells 🗞 Annotation (Polygon) (Tumor) Necrosis Annotation (Polygon) (Tumor) Other Step 2: In Pixel classifier window select "Create objects" 2. Annotation (Polygon) (Tumor) Region\* (1) 🗱 Annotation (Geometry) (Tumo Ignore\* 3. In pop-up windows choose parent object 🛤 Annotation (Geometry) (Strom: Positive Negative Annotation (Polygon) (Tumor) Pixel classifier X "Current selection" Annotation (Rectangle) (Regio Choose parent objects Current selection and object type "Annotation" Pixel classifier Abbrechen Artificial neural network (ANN MLP) Classifier Edit 4. $\rightarrow$ find automatic annotation of Ŧ Resolution Very low (7.76 µm/px Add detected tumor areas in the Create objects $\times$ Default multiscale featu Features Edit Show Annotations' list New object type Annotation Classification Show Output um^2 Minimum object size 0 Region Any annotations QuPath - DigitalSlide 2.svs µm^2 Minimum hole size 0 Load training Advanced options Edit Tools View Objects TMA Measure Automate Analyze Classify Extensic Split objects Live prediction U D / C V ~ 1 S Delete existing objects 0.89x Create objects for ignored classes Project Image Annotations Hierarchy Worflow -Set new objects to selected Annotation (Polygon) (Stroma) None Classification: Strop Tumor (5) Abbrechen Annotation (Polygon) (Stroma) OK Classifier name tumor-cla Save Stroma (3) 🔧 Annotation (Polygon) (Tumor) Immune ce Measure Create objects Classify Annotation (Polygon) (Tumor) Necrosis 🔷 Annotation (Polygon) (Tumor) Other 🗱 Annotation (Geometry) (Tumor) Region\* (1 M Annotation (Geometry) (Stroma) Ignore\* Annotation (Polygon) (Tumor)

Positive

QuPath - DigitalSlide 2.svs

## (C) Ki67 Analysis

(1)Select/Define Area for Analysis(2)Detect Positive Cells

### ad (C) Ki67 Analysis: Background Information

Ki-67 is a commonly used indicator of cellular proliferation in cancer



Ki67\_index [%] = [number of positively stained tumor cells] [total number of tumor cells]

### (1) Select/Define Area for Analysis

 in the Annotations' list select the annotation of a tumor area (e.g. the annotation of the automatically detected tumor areas)



### (2) Ki67 Analysis: Detection of Positive Cells

2. from the QuPath menu select "Analyze">"Cell detection">"Positive cell detection"



3. in the "Positive cell detection" pop-up window click on "Run"

4. Wait for the result...

| Positive cell detection               |                 |      | (    | 2 | $\times$ |
|---------------------------------------|-----------------|------|------|---|----------|
| Setup parameters                      |                 |      |      |   |          |
| Detection image                       | Hematoxylin OD  |      |      |   | *        |
| Requested pixel size                  | 0.5             | μm   |      |   |          |
| Nucleus parameters                    |                 |      |      |   |          |
| Background radius                     | 8               | μm   |      |   |          |
| Median filter radius                  | 0               | μm   |      |   |          |
| Sigma                                 | 1.5             | μm   |      |   |          |
| Minimum area                          | 10              | µm^2 |      |   |          |
| Maximum area                          | 400             | µm^2 |      |   |          |
| Intensity parameters                  |                 |      |      |   |          |
| Threshold                             | 0.1             |      |      |   |          |
| Max background intensity              | 2               |      |      |   |          |
| ✓ Split by shape                      |                 |      |      |   |          |
| Exclude DAB (membrar                  | ne staining)    |      |      |   |          |
| Cell parameters                       |                 |      |      |   |          |
| Cell expansion                        | -0              |      | 5 µm |   |          |
| Include cell nucleus                  |                 |      |      |   |          |
| General parameters                    |                 |      |      |   |          |
| ✓ Smooth boundaries                   |                 |      |      |   |          |
| <ul> <li>Make measurements</li> </ul> |                 |      |      |   |          |
| Intensity threshold paran             | neters          |      |      |   |          |
| Score compartment                     | Nucleus: DAB OD | mean |      |   | -        |
| Threshold 1+                          | -0              |      | 0.2  |   |          |
| Threshold 2+                          | _0              |      | 0.4  |   |          |
| Threshold 3+                          |                 |      | 0.6  |   |          |
| ✓ Single threshold                    | $\frown$        |      |      |   |          |
|                                       | Run             | 3    | 3    |   |          |

### (3) Ki67 Analysis Result

4. Find the result

#### QuPath - DigitalSlide\_2.svs Edit Tools View Objects TMA Measure Automate Analyze File 0 8 2 00 4 V S 0 Project Image Annotations Hierarchy Work 🝷 🚧 Annotation (Geometry) (Tumor) ( None Tumor 💊 Annotation (Polygon) (Tumor) (14) Strom: Annotation (Rectangle) (Region\*) Immur Annotation (Polygon) (Stroma) Annotation (Polygon) (Tumor) Delete Select all Key Value Image DigitalSlide\_2.svs Name Tumor Class Tumor Parent Image ROI Geometry Centroid X µm 7634.3482 5113.0687 Centroid Y µm Num Detections 62508 Num Negative 51986 Num Positive 10522 Positive % 16.833 1267.3066 Num Positive per mm^2 8302647.3819 Area µm^2 562593.7585 Perimeter µm

Classify

14.37x

# (D) Apply Trained Algorithm to Other Region

- (1) Define another Region of Interest
- (2) Load Pixel Classifier
- (3) Cell Detection

### (1) Define Region of Interest

- 1. In the Project's Image list double-click on the file name to open the respective WSI
- 2. Draw Region of Interest (e.g. rectangle annotation)



| 🎯 QuPath - DigitalSlide_1.svs                           |
|---------------------------------------------------------|
| File Edit Tools View Objects TMA Mea                    |
|                                                         |
| Project Image Annotations Hierarchy Work 🕤              |
| Create project Open project Add images                  |
| Image list                                              |
| <ul> <li>myQuPath-ECDP-WS/project.qpproj (2)</li> </ul> |
| Digital Slide_1.svs                                     |
| DigitalSlide_2.svs                                      |

### (2) Load Pixel Classifier

- From the menu bar select "Classify">"Pixel classification">"Load pixel classifier"
- In the "Load pixel classifier" pop-up window choose the (previously trained) tumor classifier → result: classifier is applied and tumor areas are detected
- Create the annotation object for the detected tumor areas Step 3a: in the Annotations' list select the Region of Interest Step 3b: in the "Load pixel classifier" window click on "Create objects" Step 3c: in the pop-up window choose "Current selection" as parent object

Step 3d: select "Annotation" as new object type

→ result: find annotation for the detected tumor areas in the Annotations' list





Extensions

Object classification

vixel classification

Training images

Help

88

.....





### (3) Cell Detection

- 1. In the Annotations' list select the previously generated annotation of the detected tumor areas
- 2. In the menu bar go to
  - "Analyse" > "Cell detection" > "Positive cell detection"



3. In the "Positive cell detection" window click on "Run" ...and wait for result...

| Setup parameters                                                                                                                                     |                                                  |                              |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------|--|
| Detection image                                                                                                                                      | Hematoxylin (                                    | D                            |  |
| Requested pixel size                                                                                                                                 | 0.5                                              | μm                           |  |
| Nucleus parameters                                                                                                                                   |                                                  |                              |  |
| Background radius                                                                                                                                    | 8                                                | μm                           |  |
| Median filter radius                                                                                                                                 | 0                                                | μm                           |  |
| Sigma                                                                                                                                                | 1.5                                              | μm                           |  |
| Minimum area                                                                                                                                         | 10                                               | μm^2                         |  |
| Maximum area                                                                                                                                         | 400                                              | μm^2                         |  |
| Intensity parameters                                                                                                                                 |                                                  |                              |  |
| Threshold                                                                                                                                            | 0.1                                              |                              |  |
| Running                                                                                                                                              |                                                  |                              |  |
| Ce 735 nuclei detected                                                                                                                               | (61%)                                            |                              |  |
| Ce 735 nuclei detected                                                                                                                               | (61%)                                            | •                            |  |
| Ce 735 nuclei detected                                                                                                                               | (61%)<br>Cancel                                  | 1                            |  |
| Ce<br>735 nuclei detected<br>Ce<br>Ge<br>W<br>Make measurements                                                                                      | (61%)<br>Cancel                                  | J                            |  |
| Ce<br>735 nuclei detected<br>Ge<br>Make measurement:<br>Intensity threshold par                                                                      | (61%)<br>Cancel                                  | I                            |  |
| Ce<br>735 nuclei detected<br>Ge<br>Make measurement:<br>Intensity threshold par<br>Score compartment                                                 | (61%)<br>Cancel<br>s<br>rameters<br>Nucleus: DAB | OD mean                      |  |
| Ce<br>735 nuclei detected<br>Ge<br>Make measurements<br>Intensity threshold par<br>Score compartment<br>Threshold 1+                                 | (61%)<br>Cancel<br>s<br>rameters<br>Nucleus: DAB | OD mean                      |  |
| Ce<br>735 nuclei detected<br>Ge<br>Make measurements<br>Intensity threshold par<br>Score compartment<br>Threshold 1+<br>Threshold 2+                 | (61%)<br>Cancel<br>s<br>rameters<br>Nucleus: DAB | OD mean<br>0.2<br>0.4        |  |
| Ce<br>735 nuclei detected<br>Ge<br>Make measurement:<br>Intensity threshold par<br>Score compartment<br>Threshold 1+<br>Threshold 2+<br>Threshold 3+ | (61%) Cancel s rameters Nucleus: DAB             | OD mean<br>0.2<br>0.4<br>0.6 |  |

### (4) Cell Detection Result = Ki67 Analysis Result

File

Image

Name

Class

Parent

ROI



### Further Reading:

https://qupath.readthedocs.io/en/stable/docs/tutorials/cell\_detection.html#

Tutorial created by Markus Plass and Michaela Kargl Medical University Graz, Diagnostics- and Research Institute for Pathology This tutorial was created within the EMPAIA-AT project funded by